opencoin

open source digital cash
finance is changing

old world

• banks, paypal - storage and transfer

• national monopoly on money creation
 (commercial cartel - Banking Act 1848)

• centralised stock and commodity markets
finance is changing

new world

• p2p protocols
• Internet-based currencies
• crowd-funding
this talk

opencoin project

disruptive financial technology

opencoin, bitcoin, ripple

- functional properties

- technical background
what is opencoin?

digital cash

p2p transfer

anonymity/private
what is opencoin?

Open Source project (2007)

• digital cash protocol
• reference implementation
• security audit - Royal Holloway
• legal report - Queen Mary

opencoin.org
what is opencoin?

international start-up team

• crypto
• developers
• business/economics
• legal
using banks

money created by banks

transferred by banks

transfers are records in a ledger

system resilience - crisis
banks for the user

expensive

slow

bank accounts not universally available

bad internet integration - c.f. email
cash

lives in your pocket

transferred peer to peer (p2p)
cash for the user

good privacy
cheap p2p transfer
risky to transfer long distance
no internet integration
digital cash

minted electronic tokens

transferred p2p (untraceable)

(patent of David Chaum, expired 2005)
using digital cash

1. Alice gets coins from mint
2. Alice transfers to Bob
3. Bob exchanges or redeems
double spending

Alice gives copy of coin to Bob.

Is coin still valid? Was it spent twice?

Contact issuer to verify validity of coin

Issuer has double spending database
opencoin protocol

...and now for some technical detail...
RSA Background

asymmetric crypto (public-private key)

RSA

• 2 large prime-numbers ‘p’ and ‘q’

• \(n = p \times q \)

• given n its hard to find p and q
standard rsa signature

key pair: public key, private key

signature = message ^ private key
blind rsa signature

blind = message * secret

blindsignature = blind ^ private key

signature = blindsignature / secret

math simplified
opencoin issuer preparation

master key

currency description document (CDD)

• public master key, denominations, etc.

one mint key per denomination
payload creation

Alice creates payload

• serial

• info fields: denomination, mint key id, etc
blind creation

Alice chooses secret (random number)

blind = payload * secret

* math simplified
minting request

Alice:

• authenticates with issuer
• sends blind to issuer
• requests minting for denomination d
minting

issuer charges Alice’s account

issuer selects private mint key for d

blind_signature = blind $^\wedge$ mintkey$_d$

issuer sends back blind_signature

* math simplified
unblinding / creating coin

Alice unblinds

• signature = blind_signature / secret

• coin = payload, signature
payload visibility

Alice didn’t send payload to issuer

=> issuer created signature on blind

=> issuer never saw payload
coin transfer

Alice sends coin to bob

any mode of transportation

• email, jabber, skype, pidgeon
coin renewal

Bob

- validates signature of coin
- creates new payload (same value as coin)
- creates blind from new payload
coin renewal II

Bob sends coin & new blind to issuer
issuer checks double spending database
issuer signs Bob’s blind
issuer returns blind_signature
coin renewal III

Bob unblinds, has his own new coin
opencoin for the user

good privacy (untraceable)
cheap p2p transfer (free)
fast transfer
media agnostic
open source
alternative payment systems

• bitcoin
• ripple
what are bitcoins?

there are no coins :-(

history of transactions between accounts

history kept in distributed ledger

account: pair of keys

account number: hash of public key
bitcoin ledger

history of transactions

transaction: Alice →-50→ Bob

transaction signed by Alice
what is a crypto hash?

Function with output of fixed length:
1. easy to compute hash value for message
2. hard to generate message for given hash
3. can’t modify message w/o changing hash
bitcoin process

transaction gets flooded to everyone

miners collect transactions into blocks

miners check if transactions are valid

• enough funds, valid signature, etc.
Miners collect transactions into blocks:

1. hash of previous block
2. freely chosen number !!
3. transaction: thin air -25-> miner
4. collected transactions
mining

find: hash(block) < x

change nonce, check hash(block), repeat...

first miner to find suitable hash wins

=> txn block authenticated

x is adjusted to mining speed
bitcoin vs. opencoin

bitcoin
- decentralised ledger
- public ledger
- integrated currency

opencoin
- centralised minting
- p2p coin transfers
- coins are tokens - any currency
bitcoin blockchain growth

currently 9 gigabytes

blockchain.info

opencoin.org
bitcoin criticism

mining consumes a lot of power

bloomberg (April)*:

~ 1 gigawatt/hour (31,000 US homes)

transactions need ~30mins to be trusted

public ledger = limited privacy

hash rate
number of transactions/day
mining operating margin
bitcoin criticism - currency

total quantity of bitcoins limited

if txn volume continues to increase:

=> value of bitcoins will increase

=> incentive to hoard

commodities are not good currencies
ripple ledger

decentralized ledger w/o mining

consensus based system

each server trusts a set of servers

majority of trusted servers agree

=> server accepts txn
ripple payment paths

everyone can issue IOUs

Alice trusts Bob’s, Bob trusts Carol’s IOUs

Alice doesn’t trust Carol’s IOUs

Carol’s can’t pay Alice directly

Carol’s pays Bob, Bob pays Alice
Internal currency called XRP
txn fees paid in XRP
IOUs in any currency
transfers in seconds
ripple

no coherent description of inner workings

no source code for server (yet?)

all XRP owned by producers (initially)
ripple confusion

Opencoin = opencoin.org

opencoin.org established 2007

producers of ripple.com: opencoin.com

established 2012
opencoin for the user

good privacy (untracable)
cheap p2p transfer (free)
fast transfer
media agnostic
open source
opencoin prototypes

#1 python

74 BaachBucks
http://baach.de:9090/

#3 javascript

Blindcoins

You have 1002 Blindcoins

Send
Receive
Get change
Process receipt
Withdraw
Deposit

currencies
advanced

opencoin.org
opencoin use cases

micropayment (content, email, etc.)

bank account alternative

international transfers

many more....
example: remittance market

more than $250 billion p.a

underdeveloped financial infrastructure

high cost criticized by World Bank, G8, governments, ...
risk and operational cost

paypal

centralised ledger

centralised ledger

defenses => cost

opencoin

wallet security

decentralised risk

must only defend mint => cheaper
finance is changing

banking crisis

txn system tied to investment system

systemic risk, private profit, public distrust

national and commercial monopolies
finance is changing

ecosystem of new innovations

hope for the future

high-growth potential

competition and democratic uptake
thank you!

tom@opencoin.org

http://opencoin.org

slides: http://opencoin.org/campusparty13